Equilibrium reconstruction of q- and p- profiles in ITER using different external and internal measurements¹

Leonid Zakharov

Princeton Plasma Physics Laboratory, MS-27
P.O. Box 451, Princeton NJ 08543-0451

in collaboration with

Jill E.L. Foley, Fred M. Levinton, and Howard Y. Yuh

Nova Photonics

Conference on Diagnostics of High Temperature plasma,

June 07, 2007, Zvenigirod, RF

¹ This work is supported by US DoE contract No. DE-AC020-76-CHO-3073

Abstract

plasma current density and pressure profiles in the Grad-Shafranov equation. The associated technique was incorporated into the ESC code. The talk presents a theory of uncertainties in the reconstructions of the

of external and internal measurements envisioned for equilibrium reconstruction Potential variances in q- and p- profiles have been calculated for different sets

by Nova Photonics line shift signals (MSE-LS) can significantly improve the reliability of the reconstructed plasma profiles and the magnetic configuration. ther Stark line polarization signals (MSE-LP) or with recently proposed for ITER It was shown that complementing the external magnetic measurements with ei-

cant gap in ability to evaluate the quality of the presently widely used equilibrium have completed the theory of reconstruction, which for a long time had a signifi-Capabilities of calculating variances, incorporated into the numerical code ESC, reconstruction technique.

5							4	ယ	2	_
Sum	4.6	4.5	4.4	4.3	4.2	4.1	Capa	"Rigo	Varia	Set
5 Summary Command Comm	Curious case, NO B -signals, $\xi \neq 0$, Φ & both MSE-LP & MSE-LS	Free boundary, magnetic signals & both MSE-LP & MSE-LS	Magnetic signals & both MSE-LP & MSE-LS	Magnetic signals & line shift MSE-LS	Magnetic signals & MSE-LP	Good looking magnetic only reconstruction	Capabilities of diagnostics for equilibrium reconstruction	"Rigorous" theory for "non-rigorous" reality	Variances in tokamak equilibrium reconstruction	Set of signals for equilibrium reconstruction
32	30	28	26	21	18	14	12	9	6	4

PPPL MINISTON PLASA. MINISTON PLASA.

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

ယ

Set of signals for equilibrium reconstruction

ITER B=5.3 T, I_{pl} =15 MA eta=2.8% equilibrium configuration

One of unique features of ITER is its 1 MeV neutral beam injection

Nova Photonics Measurements of the as a diagnostics of ITER configuration Line Shift due to MSE was proposed by

ances in equilibrium reconstruction in ITER: Reference signal errors ϵ used here for calculating vari-

MSE-LS 0.01	MSE-LP 0.01	Φ -loop 0.01	Ψ -loops 0.01	B-coils 0.01	Signal name $ \epsilon' ^{\epsilon'''''''''} \epsilon''''''''''''''''''''''''''$
0.01		0.01	0.01	0.01	ϵ'
T 50.0	0.10	0.001 Vsec	0.001 Vsec	0.01 T	ϵ_{aoonac}
$\sqrt{ \mathbf{B} ^2-(\mathbf{B}\cdot\mathbf{v})^2}$ from MSE line shift	B_z/B_{arphi} from MSE line polarization	0.001 Vsec diamagnetic loop		local probes	Comment

tonics. MSE-LP and MSE-LS signals were assumed to be pointwise. This requires more realistic model from Nova Pho-

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

S

The capabilities of equilibrium reconstruction with such a set

of signal is the topic of the talk

2 Variances in tokamak equilibrium reconstruction

in reconstructed equilibiria practice typically neglects making analysis of variances

In tokamaks the Grad-Shafranov (GSh) equation describes the configuration

$$\Delta^* ar{\Psi} = -T(ar{\Psi}) - P(ar{\Psi}) r^2, \quad T \equiv ar{F} rac{dar{F}}{dar{\Psi}}, \quad P \equiv \mu_0 rac{dp}{dar{\Psi}}, \quad (2.1)$$

Its solution can be perturbed by

1. perturbation of the plasma shape

$$\xi(a_{pl},l),$$
 and (2.2)

2. perturbation of two 1-D functions

$$\delta T(\bar{\Psi}), \quad \delta P(\bar{\Psi}).$$
 (2.3)

not be distinguished given the finite accuracy of measurements. The question, neglected by present practice, is what level of perturbations can-

The level of variances $\xi, \delta T, \delta P$ determines the very value of reconstruction and of the entire diagnostics system

The theory ..Zakharov, of variances J.Levandowski, V.Drozdov and D.McDonald by

The problem is reduced to solving the linearized equilibrium problem

$$ar{\Psi} = ar{\Psi}_0 + \psi, \quad \Delta^* \psi + T_{ar{\Psi}}' \psi + P_{ar{\Psi}}' \psi = -\delta T(a) - \delta P(a) r^2$$
 (2.4)

for N possible perturbations

$$\xi = \sum\limits_{n=0}^{n < N_{\xi}} A_{n} \xi^{n}(l), \quad \delta T = \sum\limits_{n=0}^{n < N_{J}} T_{n} f^{n}, \quad \delta P = \sum\limits_{n=0}^{n < N_{P}} P_{n} f^{n},$$
 (2.5)

$$N=N_{\xi}+N_{J}+N_{P}, \quad f^{2n}=\cos 2\pi n a^{2}, \quad f^{2n+1}=\sin 2\pi n a^{2},$$

the square root from the normalized toroidal flux. where l is the poloidal coordinate at the plasma boundary, and $0 \le a \le 1$ is

a straightforward way. The response of the diagnostics to each of N solutions ψ^n can be calculated in

ESC is based on linearization of the GSh equation. It was complemented with a routine for analysis of variances

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

2 Variances in tokamak equilibrium reconstruction (cont.)

8 functions $f^n(a^2)$ has been used to perturb $P(\Psi)$ $T(\Psi)$

Trigonometric ex functions $f^n(a^2)$ expansion background current den- background pressure prosity profiles $ar{\jmath}_s(a)$ file $ar{p}(a)$

ESC can use an extended set of basis functions

After solving the perturbed GSh equation, the problem is reduced to a matrix problem

Let vector $ec{X}$ contains the amplitudes of perturbations

$$\vec{X} \equiv \left\{ \underbrace{A_0, A_1, \dots, A_{N_b-1}, \underbrace{T_0, \dots, T_{N_T-1}, P_0, \dots, P_{N_P-1},}_{N_T \ of \ \delta T}, \left\{ \underbrace{A_0, A_1, \dots, A_{N_b-1}, \underbrace{T_0, \dots, T_{N_T-1}, P_0, \dots, P_{N_P-1},}_{N_P \ of \ \delta P} \right\}$$
(3.1)

and vector $\delta ec{S}$ represents the signals

$$\delta \vec{S} \equiv \left\{ \underbrace{\frac{\delta \Psi_0, \dots, \delta \Psi_{M_{\Psi}-1}, \delta B_0, \dots, \delta B_{M_B-1}, \delta S_0, \dots, \delta S_{M_S-1}}{M_B \text{ of } \delta B_{pol}}, \underbrace{\delta S_0, \dots, \delta S_{M_S-1}}_{M_S \text{ of } \delta \text{ others}} \right\}, \quad (3.2)$$

$$M \equiv M_{\Psi} + M_B + M_S, \quad M > N.$$

 $32~\Psi-$, $1~\Phi_{diamagnetic}$ -loops, 64~B-probes, 21~MSE-LP (line polarization) and 21~MSE-LS (line shift) signals (both pointwise) were used in the analysis.

ESC calculates the response matrix A relating $\delta ec{S}$ and perturbations $\delta ec{X}$

$$\delta \vec{S} = A \vec{X}, \quad A = A_{M \times N}. \tag{3.3}$$

PPPL

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

ဖ

3 "Rigorous" theory for "non-rigorous" reality (cont.)

The working matrix $ar{ riangle}$ weights δS_m based on their accuracy

$$(\overline{A})_m^n = \frac{1}{\epsilon_m} (A)_m^n, \quad \delta \bar{S}_m = \frac{1}{\epsilon_m} \delta S_m, \quad \overline{A} \vec{X} = \delta \vec{\bar{S}},$$
 (3.4)

where ϵ_m is the error in the signal S_m . SVD expresses the matrix $\overline{\mathsf{A}}$ as a product

$$\overline{A} = \bigcup \cdot W \cdot V^{T},
U = \bigcup_{M \times N}, \quad U^{T} \cdot \bigcup = I, \quad I_{m}^{n} = \delta_{m}^{n},
W = W_{N \times N}, \quad W_{n}^{k} = w^{k} \delta_{n}^{k},
V = V_{N \times N}, \quad V^{T} \cdot V = I.$$
(3.5)

V represent the normalized eigen-vectors of the problem. Here, w^k are the eigenvalues of the matrix problem. The columns V^k of matrix

The solution of matrix problem (3.5) generates a hierarchy of eigen-perturbations each corresponding to columns of matrix V

Eigen-values w^k determine visibility of eigen-perturbations

In terms of columns of matrix V , the eigen-perturbations $ec{X}^k$ can be defined as

$$\equiv \gamma^k \nabla^k,$$
 (3.6)

among characteristic $\xi_{max}, \delta T_{max}, \delta P_{max}$. where factors γ^k scale each physical perturbation to the most limiting value

Calculation of RMS of the signals $ec{oldsymbol{S}}^k$ generated by each $ec{oldsymbol{X}}^k$

$$\delta \vec{\bar{S}}^k = \overline{A} \vec{X}^k = \gamma^k w^k \vec{U}^k, \quad \left[\frac{1}{M} \sum_{m=0}^{m < M} \left(\delta \bar{S}_m^k \right)^2 \right] = \frac{\gamma^k w^k}{\sqrt{M}}, \quad (3.7)$$

determines variances $\bar{\sigma}^k$ in reconstruction of each eigen-perturbations as

$$\bar{\sigma}^k \equiv \frac{\sqrt{M}}{\gamma^k w^k},\tag{3.8}$$

The spectrum of $ar{\sigma}^k$, defined by Eq.(3.8), is a quantitative measure of quality of diagnostic systems

Perturbations $ec{X}^k$ with $ar{\sigma}^k > 1$ are "invisible" for diagnostics

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

Capabilities of diagnostics for equilibrium reconstruction

ITER configuration is used for illustrating the technique

Reference signal errors ϵ used here for calculating variances in equilibrium reconstruction in ITER:

MSE-LS 0.01 0.05 T	MSE-LP 0.01 0.1°	Φ-loop 0.01 0.001 Vsec	Ψ-loops 0.01 0.001 Vsec	B-coils 0.01 0.01 T	Signal name $\epsilon^{retarive}$ $\epsilon^{aosorure}$
$\sqrt{ \mathbf{B} ^2-(\mathbf{B}\cdot\mathbf{v})^2}$ from MSE line shift	B_z/B_{arphi} from MSE line polarization	0.001 Vsec diamagnetic loop	sec	local probes	Comment

MSE-LP and MSE-LS signals were assumed to be pointtonics. wise. This requires more realistic model from Nova Pho-

Different combinations of signal lead to different residual variances

Plasma boundary is well specified, Φ-loop, B-coils are used

 $ar{\sigma}_q$ and $ar{\sigma}_p^k$ [MPa] on the left plot are RMS for **q**- and **p**-profiles

Perturbations $j_s^{k>8}$ $,j_{p}^{k>8}$ are invisible and cannot be reconstructed

PPPL MINIOTON FLASH MINIOTON FLASH MINIOTON FLASH Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

 $\frac{1}{3}$

4.1 Good looking magnetic only reconstruction

Plasma boundary is well specified, Φ-loop, B-coils are used

for $k_J \leq 3$, $k_P \leq 2$ profile and variances functions of a variances in p-profile as Signals $\delta S_m/\epsilon_m$ ated by perturbations gener-

For KiloGb's of reconstructions "data" can be easily generated k_J + k_P =5, typically used, the reconstruction looks very good

Plasma boundary is well specified, Φ-loop, B-coils are used

for $k_J \leq 4$, $k_P \leq 3$. profile and variances

ances as functions of a pprofile and its vari-

Signals $\delta S_m/\epsilon_m$ ated by perturbations gener-

Testing k_J + k_P =7 shows that the reconstruction is, in fact, not so good

PPPL PPPL PROGRAMATOR

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

15

4.1 Good looking magnetic only reconstruction (cont.)

Plasma boundary is well specified, Φ-loop, B-coils are used

for $k_J \leq 4$, $k_P \leq 4$ q— profile and variances

ances as functions of a

p- profile and its vari- Signals $\delta S_m/\epsilon_m$ ated by perturbations gener-

Testing k_J + k_P =8 shows that even the q reconstruction is doubtful

Plasma boundary is well specified, Φ-loop, B-coils are used

for $k_J \leq 8$, $k_P \leq 8$ profile and variances ances as functions of a pprofile and its vari-Signals ated by perturbations $\delta S_m/\epsilon_m$ gener-

Test of $k_J \! + \! k_P \! = \! 16$ shows that with no constrains the reconstruction has no scientific value and is a sort of "beliefs"

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

17

4.2 Magnetic signals & MSE-LP

Fixed plasma boundary with (♠ & B & MSE-LP) signals

Use of MSE-LP drops largest RMS $\bar{\sigma}$, makes 12 perturbations visible, and dramatically improves reconstruction of q, p

Fixed plasma boundary with (♠ & B & MSE-LP) signals

for $k_J \leq 6$, $k_P \leq 6$ profile and variances ances as functions of a pprofile and its vari- Signals $\delta S_m/\epsilon_m$ by perturbations generated

Testing N 12 shows that MSE-LP allows to reconstruct both

q- and p-profiles

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

1 19

4.2 Magnetic signals & MSE-LP (cont.)

Fixed plasma boundary with (♠ & B & MSE-LP) signals

Only perturbations with k 14 might be potentially troublesome

ances as functions of a

p- profile and its vari- Signals

Signals $\delta S_m/\epsilon_m$ generated by perturbations

for all k

q— profile and variances

Fixed plasma boundary with (Φ & B & MSE-LS) signals

Use of MSE-LS can compete with MSE-LP in its value for reconstruction

PPPL MINISTER LABORATION

> Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

21

4.3 Magnetic signals & line shift MSE-LS (cont.)

Fixed plasma boundary with (♠ & B & MSE-LS) signals

q- profile and variances for all k

p— profile and its vari- Signals ances as functions of a ated by

ts vari- Signals $\delta S_m/\epsilon_m$ generof a ated by perturbations

Perturbations with k 12 can be reconstructed using MSE-LS

Same case with the improved relative accuracy of MSE-LS

A realistic reduction of relative error $\epsilon_{MSE-LS}^{relative}$ the pressure profile reconstruction 0.1% improves

PPPL PRINCETON PLASMA P

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

23

4.3 Magnetic signals & line shift MSE-LS (cont.)

Same case with $\epsilon_{MSE-LS}^{relative}$ 0.1% and non-monotonic $ar{\jmath}_s$

MSE-LS can pick up the details of the current drive

Back to reference fixed boundary and (Φ & B & MSE-LS)

troublesome

With MSE-LS only perturbations with $oldsymbol{k}$ 13 might be potentially

ances as functions of a

for all k

profile and variances

p-

profile and its vari-

Signals

 $\delta S_m/\epsilon_m$

gener-

ated by perturbations

PPPL

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

25

4.4 Magnetic signals & both MSE-LP & MSE-LS

\Box Qο MSE-LP & -LS) signals

Both MSE-LP & LS allows for a reliable reconstruction of q- and ar p-profiles

 $\log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}^k_q,\ \bar{\sigma}^k_p\}$ in case of $(\Phi\ \&\ B\ \&\ \mathsf{MSE-LP}\ \&\ \mathsf{MSE-LS})$

 $\log_{10}\{ar{\sigma}^k,\ ar{\sigma}_q^k,\ ar{\sigma}_p^k\}$ in case of $\log_{10}\{ar{\sigma}^k,\ ar{\sigma}_q^k,\ (\Phi\ \&\ B\ \&\ \mathsf{MSE-LP})$ $(\Phi\ \&\ B)$ only

 $ar{\sigma}_p^k\}$ in case of

B & MSE-LP&LS) signals

for all k profile and variances as functions of a p-profile and its variances Signals ated by perturbations $\delta S_m/\epsilon_m$ gener-

q- and p-profiles can be reconstructed in all spectrum of k

PPPL mmoziron rusalu mmoziron rusalu

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

27

4.5 Free boundary, magnetic signals & both MSE-LP & MSE-LS

Free boundary plasma with (♠ & \mathcal{B} & MSE-LP & -LS) signals

Free boundary expands the k range but does not affect the reconstruction

 $\begin{array}{ll} \log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}_q^k,\ \bar{\sigma}_p^k\} \ \ \text{in case of} \ \ \log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}_q^k,\ \bar{\sigma}_p^k\} \ \ \text{in case of} \\ (\Phi \& B \& \ \text{MSE-LP} \& \ \text{MSE-LS}), \ \ (\Phi \& B \& \ \text{MSE-LP} \& \ \text{MSE-LS}), \\ \vec{\xi} \neq 0 & \vec{\xi} = 0 \end{array}$

$$\begin{split} \log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}_q^k,\ \bar{\sigma}_p^k\} \ \text{in case of} \\ (\Phi \ \& \ B \ \& \ \mathsf{MSE-LP}),\ \vec{\xi} = 0 \end{split}$$

Free boundary plasma with (♠ & B & MSE-LP & -LS) signals

for all extended k profile and variances as functions of a p-profile and its variances Signals ated by perturbations $\delta S_m/\epsilon_m$ gener-

q- and p-profiles can be reconstructed in all extended spectrum of k

PPPL MINISTER LABORATOR

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

29

4.6 Curious case, NO B-signals, $\xi
eq 0$, Φ & both MSE-LP & MSE-LS

Free boundary, (⊕ & MSE-LP & ŁS signals, NO O B-signals

(MSE-LP & MSE-LS) together can do the job for external B-coils

 $\begin{array}{ll} \log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}_q^k,\ \bar{\sigma}_p^k\} \ \ \text{in case of} \ \ \log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}_q^k,\ \bar{\sigma}_p^k\} \ \ \text{in case of} \\ (\Phi \& B \& \ \text{MSE-LP} \& \ \text{MSE-LS}), \ \ (\Phi \& B \& \ \text{MSE-LP} \& \ \text{MSE-LS}), \\ \xi \neq 0 \qquad \qquad \xi \neq 0 \end{array}$

$$\begin{split} \log_{10}\{\bar{\sigma}^k,\ \bar{\sigma}_q^k,\ \bar{\sigma}_p^k\} \ \text{in case of} \\ (\Phi \ \& \ B \ \& \ \text{MSE-LP}), \ \text{and} \ \vec{\xi} = 0 \end{split}$$

Free boundary, (Φ & MSE-LP & -LS) signals, NO B-signals

q- and p-profiles can be reconstructed over extended spectrum of keven with NO B-coil signals

PPP PPP

Leonid E. Zakharov, Conference on Diagnostics of High Temperature plasma, Zvenigirod, RF, June 3-8, 2007

 $\frac{\omega}{2}$

5 Summary

completed the theory of equilibrium reconstruction of calculating variances, now developed, has

- 1. The quantitative evaluation of the quality of diagnostics systems on existing and future machines can be done based on spectrum of "visible" perturbations ($ar{\sigma}$ -curves)
- 2. It was confirmed that the internal measurements of the magnetic field are crucial for reconstruction.
- 3. Either MSE-LP (line polarization) or MSE-LS (line shift) signals from the plasma in addition to external measurements allow for a complete reconstruction (of both q- and p-profiles).
- The presented technique can be used to optimize the diagnostic set on any tokamaks. Contribution of any signal can be evaluated.
- 9 The proposal by Nova Photonics to utilize MSE-LS signals would significantly enhance the equilibrium reconstruction capability in ITER.

The extension of the theory should be focused on realistic simulation of signals used in reconstructions

